16 research outputs found

    A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells

    Get PDF
    Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines

    Access to stem cell data and registration of pluripotent cell lines: the Human Pluripotent Stem Cell Registry (hPSCreg)

    Get PDF
    The value of human pluripotent stem cells (hPSC) in regenerative medicine has yet to reach its full potential. The road from basic research tool to clinically validated PSC-derived cell therapy products is a long and winding one, leading researchers, clinicians, industry and regulators alike into undiscovered territory. All stakeholders must work together to ensure the development of safe and effective cell therapies. Similarly, utilization of hPSC in meaningful and controlled disease modeling and drug screening applications requires information on the quality and suitability of the applied cell lines. Central to these common goals is the complete documentation of hPSC data, including the ethical provenance of the source material, the hPSC line derivation, culture conditions and genetic constitution of the lines. Data surrounding hPSC is scattered amongst diverse sources, including publications, supplemental data, researcher lab books, accredited lab reports, certificates of analyses and public data repositories. Not all of these data sources are publicly accessible nor associated with metadata nor stored in a standard manner, such that data can be easily found and retrieved. The Human Pluripotent Stem Cell Registry (hPSCreg; https://hpscreg.eu/) was started in 2007 to impart provenance and transparency towards hPSC research by registering and collecting standard properties of hPSC lines. In this chapter, we present a short primer on the history of stem cell-based products, summarize the ethical and regulatory issues introduced in the course of working with hPSC-derived products and their associated data, and finally present the Human Pluripotent Stem Cell Registry as a valuable resource for all stakeholders in therapies and disease modeling based on hPSC-derived cells

    hPSCreg - the human pluripotent stem cell registry

    Get PDF
    The human pluripotent stem cell registry (hPSCreg), accessible at http://hpscreg.eu, is a public registry and data portal for human embryonic and induced pluripotent stem cell lines (hESC and hiPSC). Since their first isolation the number of hESC lines has steadily increased to over 3000 and new iPSC lines are generated in a rapidly growing number of laboratories as a result of their potentially broad applicability in biomedicine and drug testing. Many of these lines are deposited in stem cell banks, which are globally established to store tens of thousands of lines from healthy and diseased donors. The Registry provides comprehensive and standardized biological and legal information as well as tools to search and compare information from multiple hPSC sources and hence addresses a translational research need. To facilitate unambiguous identification over different resources, hPSCreg automatically creates a unique standardized name for each cell line registered. In addition to biological information, hPSCreg stores extensive data about ethical standards regarding cell sourcing and conditions for application and privacy protection. hPSCreg is the first global registry that holds both, manually validated scientific and ethical information on hPSC lines, and provides access by means of a user-friendly, mobile-ready web application

    A Manually Curated Database on Clinical Studies Involving Cell Products Derived from Human Pluripotent Stem Cells

    Get PDF
    The last 5 years have witnessed a significant increase in the number of clinical studies based on human pluripotent stem cells (hPSCs). In parallel, concern is increasing about the proliferation of unregulated stem cell treatments worldwide. Regulated clinical testing is a de facto standard to establish the safety and efficacy of new cell therapies, yet reliable information on clinical studies involving hPSCs is scattered. Our analysis of a multitude of resources found 54 clinical studies involving several types of hPSCs, which are performed in ten countries. While the majority of those studies is based on human embryonic stem cells (hESCs), clinical studies involving human induced pluripotent stem cells increased more strongly in the past 2 years than the number of hESC-based studies. A publicly accessible database was created using the human pluripotent stem cell registry (https://hpscreg.eu) platform, providing a steadily updated comprehensive overview on hPSC-based clinical studies performed worldwide

    Integrated Collection of Stem Cell Bank Data, a Data Portal for Standardized Stem Cell Information

    Get PDF
    世界中で樹立されたiPS細胞の数や疾患の種類が明らかに. 京都大学プレスリリース. 2021-03-19.The past decade has witnessed an extremely rapid increase in the number of newly established stem cell lines. However, due to the lack of a standardized format, data exchange among stem cell line resources has been challenging, and no system can search all stem cell lines across resources worldwide. To solve this problem, we have developed the Integrated Collection of Stem Cell Bank data (ICSCB) (http://icscb.stemcellinformatics.org/), the largest database search portal for stem cell line information, based on the standardized data items and terms of the MIACARM framework. Currently, ICSCB can retrieve >16, 000 cell lines from four major data resources in Europe, Japan, and the United States. ICSCB is automatically updated to provide the latest cell line information, and its integrative search helps users collect cell line information for over 1, 000 diseases, including many rare diseases worldwide, which has been a formidable task, thereby distinguishing itself from other database search portals

    Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC):The Hot Start experience

    Get PDF
    A fast track “Hot Start” process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. eTOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Entwicklung einer Ontologie zur Repräsentation von Zellen in komplexen Systemen

    No full text
    Background: The need for detailed description and modeling of cells drives the continuous generation of large and diverse datasets. Unfortunately, there exists no systematic and comprehensive way to organize these datasets and their information. CELDA (Cell: Expression, Localization, Development, Anatomy) is a novel ontology for the association of primary experimental data and derived knowledge to various types of cells of organisms. Results: CELDA is a structure that can help to categorize cell types based on species, anatomical localization, subcellular structures, developmental stages and origin. It targets cells in vitro as well as in vivo. Instead of developing a novel ontology from scratch, we carefully designed CELDA in such a way that existing ontologies were integrated as much as possible, and only minimal extensions were performed to cover those classes and areas not present in any existing model. Currently, ten existing ontologies and models are linked to CELDA through the top-level ontology BioTop. Together with 15.439 newly created classes, CELDA contains more than 196.000 classes and 233.670 relationship axioms. CELDA is primarily used as a representational framework for modeling, analyzing and comparing cells within and across species in CellFinder, a web based data repository on cells (http://cellfinder.org). Conclusions: CELDA can semantically link diverse types of information about cell types. It has been integrated within the research platform CellFinder, where it exemplarily relates cell types from liver and kidney during development on the one hand and anatomical locations in humans on the other, integrating information on all spatial and temporal stages. CELDA is available from the CellFinder website: http://cellfinder.org/about/ontologyHintergrund: Kontinuierlich werden große und vielfältige Datensets erzeugt, um dem Verlangen nach einer detaillierten Beschreibung und Modellierung von Zellen gerecht zu werden. Allerdings gibt es bisher keinen systematischen und alles umfassenden Ansatz, um diese Datenmengen zu organisieren. CELDA (Cell: Expression, Localization, Development, Anatomy) ist eine neu entwickelte Ontologie, die es erlaubt, primäre Experimentaldaten und das daraus entwickelte Wissen mit Zelltypen in verschiedenen Organismen zu assoziieren. Ergebnisse: CELDA bietet eine formale Struktur, die es erlaubt, Zelltypen basierend auf Spezies, anatomischer Lokalisation, subzellularen Strukturen, Entwicklungsstadium und Herkunft zu charakterisieren. Dabei können sowohl Zellen in vivo als auch in vitro beschrieben werden. Bei der Entwicklung von CELDA wurde nicht von Grund auf alles neu geschrieben sondern es wurde darauf geachtet, so weit wie möglich bestehende Ontologien zu integrieren. Erweiterungen wurden eingefügt, um Klassen und Gebiete zu beschreiben, die bisher durch keine andere Ontologie abgedeckt wurde. Zum jetzigen Zeitpunkt sind zehn existierende Ontologien mit CELDA durch die Top-Level Ontologie BioTop verlinkt. Zusammen mit 15.439 neu erstellten Klassen enthält CELDA insgesamt mehr als 196.000 Klassen und 233.670 Beziehungen zwischen diesen Klassen. CELDA wird primär als Backend für die Modellierung und Analyse von Zelltypen sowie für den Vergleich von Zelltypen innerhalb und zwischen verschiedenen Spezies in CellFinder (ein webbasiertes Informationsarchiv für Zelltypen) verwendet (http://cellfinder.org). Schlussfolgerung: CELDA ist in der Lage, verschiedene Informationsarten über Zelltypen miteinander zu verlinken. Die Ontologie wurde in die Forschungsplattform CellFinder integriert, wo es beispielhaft Zelltypen der Niere während der Organentwicklung im Menschen mit der jeweiligen anatomischen Lokalisation darstellt bringt. Dabei werden Informationen über räumliche und zeitliche Etappen mit einbezogen. CELDA ist online frei verfügbar unter der CellFinder Webseite http://cellfinder.org/about/ontology

    Semantic body browser: graphical exploration of an organism and spatially resolved expression data visualization

    No full text
    Advancing technologies generate large amounts of molecular and phenotypic data on cells, tissues and organisms, leading to an ever-growing detail and complexity while information retrieval and analysis becomes increasingly time-consuming. The Semantic Body Browser is a web application for intuitively exploring the body of an organism from the organ to the subcellular level and visualising expression profiles by means of semantically annotated anatomical illustrations. It is used to comprehend biological and medical data related to the different body structures while relying on the strong pattern recognition capabilities of human users.N

    Recent Trends in Research with Human Pluripotent Stem Cells: Impact of Research and Use of Cell Lines in Experimental Research and Clinical Trials

    Get PDF
    Summary: The human pluripotent stem cell (hPSC) research landscape is rapidly evolving. To assess possible novel trends in hPSC usage, we analyzed experimental hPSC research published from 2014 to 2016 and compared our data with those of earlier periods. The number of papers describing experimental work involving hPSCs increased further with clear differences in the scientific impact of publications from different countries. Our results confirm the leading position of US-based hPSC research, although to a lesser degree than observed previously. Our data reveal that research into human induced pluripotent stem cells alone surpassed human embryonic stem cell (hESC) research by 2015 and rapidly grew after that. We also report on continuing and even slightly growing research activities in the hESC field as well as on a generally declining rate of the generation of new hESC lines. An increasing portion of new hESC lines represents disease-specific and clinical-grade cell lines. The previously noted usage of only a few early established hESC lines in the vast majority of scientific work is sustained. We also provide a comprehensive overview on clinical trials on the basis of hPSCs. We find that the vast majority of those trials are based on hESC-derived cell products that were generated from an only limited number of relatively old cell lines. : Guhr et al. show that there are marked differences in the impact of recent hPSC research from different countries. The hESC line usage patterns remained mainly unchanged. The authors provide a comprehensive overview on clinical trials involving hPSC-derived cell products and find that these trials are mainly based on hESCs. Keywords: human pluripotent stem cells, human embryonic stem cells, human induced pluripotent stem cells, research, impact, citation frequencies, hESC lines, clinical trial
    corecore